Dissociation potential curves of low-lying states in transition metal hydrides. 3. Hydrides of groups 6 and 7.
نویسندگان
چکیده
The dissociation curves of low-lying spin-mixed states in monohydrides of groups 6 and 7 were calculated by using an effective core potential (ECP) approach. This approach is based on the multiconfiguration self-consistent field (MCSCF) method, followed by first-order configuration interaction (FOCI) calculations, in which the method employs an ECP basis set proposed by Stevens and co-workers (SBKJC) augmented by a set of polarization functions. Spin-orbit coupling (SOC) effects are estimated within the one-electron approximation by using effective nuclear charges, since SOC splittings obtained with the full Breit-Pauli Hamitonian are underestimated when ECP basis sets are used. The ground states of group 6 hydrides have Omega = (1)/(2)(X(6)Sigma(+)(1/2)), where Omega is the z component of the total angular momentum quantum number. Although the ground states of group 7 hydrides have Omega = 0(+), their main adiabatic components are different; the ground state in MnH originates from the lowest (7)Sigma(+), while in TcH and ReH the main component of the ground state is the lowest (5)Sigma(+). The present paper reports a comprehensive set of theoretical results including the dissociation energies, equilibrium distances, electronic transition energies, harmonic frequencies, anharmonicities, and rotational constants for several low-lying spin-mixed states in these hydrides. Transition dipole moments were also computed among the spin-mixed states and large peak positions of electronic transitions are suggested theoretically for these hydrides. The periodic trends of physical properties of metal hydrides are discussed, based on the results reported in this and other recent studies.
منابع مشابه
Investigation of metal hydrides applicability as neutron moderator and shielding by MCNPX
In this research, the applicability of several metal hydrides as neutron moderator and shielding for D-D fusion sources has been investigated by MCNPX code. The results have been investigated in three steps to find the materials with lower thermal, fast and total neutron fluxes than conventional shielding materials. The results show relative advantages of LaNi5H6, VH, TiH2, TaH, Mg (BH4)2, YH2,...
متن کاملTheoretical Studies of Transition - Metal Hydrides . 3 . SrH + through CdH +
Generalized valence bond plus configuration interaction calculations have been carried out on the monopositive diatomic metal hydride ions of the second transition-metal series (YH+-CdH+, including SrH'). We analyze the trends in bond energies, equilibrium geometries, vibrational frequencies, and metal orbital hybridizations. The trends in these quantities can be understood in terms of (1) the ...
متن کاملToward accurate thermochemical models for transition metals: G3Large basis sets for atoms Sc-Zn.
An augmented valence triple-zeta basis set, referred to as G3Large, is reported for the first-row transition metal elements Sc through Zn. The basis set is constructed in a manner similar to the G3Large basis set developed previously for other elements (H-Ar, K, Ca, Ga-Kr) and used as a key component in Gaussian-3 theory. It is based on a contraction of a set of 15s13p5d Gaussian primitives to ...
متن کاملMetal Hydrides: Transition Metal Hydride Complexes
Solid-state metal hydrides provide a safe and efficient way of storing hydrogen (Schlapbach 2002). They are commercialized for use in rechargeable batteries and developed for energy conversion devices such as fuel cells (see Hydrogen Metal Systems: Electrochemical Reactions). A great majority of metal hydrides derives from intermetallic compounds and alloys (see Hydrogen Metal Systems: Hydride ...
متن کاملDOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report
Our studies comprise two classes of materials: metal hydrides and complex hydrides. Metal hydrides can store large amounts of hydrogen, but due to the high atomic mass of the host element(s) the weight-percent efficiency is typically low. We are focusing on materials in which the atomic mass of the metal is low, such as MgH2 and AlH3. Comprehensive studies of point defects and migration enable ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 110 7 شماره
صفحات -
تاریخ انتشار 2006